首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3772篇
  免费   83篇
  国内免费   127篇
  2023年   15篇
  2022年   23篇
  2021年   43篇
  2020年   37篇
  2019年   45篇
  2018年   60篇
  2017年   30篇
  2016年   38篇
  2015年   66篇
  2014年   144篇
  2013年   392篇
  2012年   105篇
  2011年   208篇
  2010年   109篇
  2009年   183篇
  2008年   166篇
  2007年   195篇
  2006年   176篇
  2005年   157篇
  2004年   158篇
  2003年   142篇
  2002年   131篇
  2001年   98篇
  2000年   61篇
  1999年   74篇
  1998年   112篇
  1997年   92篇
  1996年   78篇
  1995年   91篇
  1994年   96篇
  1993年   71篇
  1992年   64篇
  1991年   63篇
  1990年   55篇
  1989年   48篇
  1988年   44篇
  1987年   34篇
  1986年   26篇
  1985年   31篇
  1984年   52篇
  1983年   32篇
  1982年   42篇
  1981年   22篇
  1980年   22篇
  1979年   22篇
  1978年   8篇
  1977年   5篇
  1976年   4篇
  1975年   6篇
  1974年   4篇
排序方式: 共有3982条查询结果,搜索用时 16 毫秒
1.
The biochemical responses of Holcus lanatus L. to copper and arsenate exposure were investigated in arsenate‐tolerant and ‐non‐tolerant plants from uncontaminated and arsenic/copper‐contaminated sites. Increases in lipid peroxidation, superoxide dismutase (SOD) activity and phytochelatin (PC) production were correlated with increasing copper and arsenate exposure. In addition, significant differences in biochemical responses were observed between arsenate‐tolerant and ‐non‐tolerant plants. Copper and arsenate exposure led to the production of reactive oxygen species, resulting in significant lipid peroxidation in non‐tolerant plants. However, SOD activity was suppressed upon metal exposure, possibly due to interference with metallo‐enzymes. It was concluded that in non‐tolerant plants, rapid arsenate influx resulted in PC production, glutathione depletion and lipid peroxidation. This process would also occur in tolerant plants, but by decreasing the rate of influx, they were able to maintain their constitutive functions, detoxify the metals though PC production and quench reactive oxygen species by SOD activity.  相似文献   
2.
《Free radical research》2013,47(1):287-296
A full understanding of enzyme-substrate interactions requires a detailed knowledge of their structural basis at atomic resolution. Crystallographic and biochemical data have been analyzed with coupled computational and computer graphic approaches to characterize the molecular basis for recognition of the superoxide anion substrate by Cu. Zn superoxide dismutase (SOD). Detailed analysis of the bovine SOD structure aligned with SOD sequences from 15 species provides new results concerning the significance and molecular basis for sequence conservation. Specific roles have been assigned for all 23 invariant residues and additional residues exhibiting functional equivalence. Sequence invariance is dominated by 15 residues that form the active site stcreochemistry. supporting a primary biological function of superoxide dismutation. Using data from crystallographic structures and site-directed mutants, we are testing the role of individual residues in the active site channel, including (in human SOD) Glu132, Glu133, Lys136, Thr137, and Arg 143. Electrostatic calculations incorporating molecular flexibility suggest that the region of positive electrostatic potential in and over the active site channel above the Cu ion sweeps through space during molecular motion to enhance the facilitated diffusion responsible for the enzyme's rapid catalytic rate.  相似文献   
3.
4.
5.
Aquaspirillum magnetotacticum MS-1 cells cultured microaerobically (dissolved O2 tension 1% of saturation), expressed proteins with superoxide dismutase (SOD) activity. The majority (roughly 95%) of total cell superoxide dismutase activity was located in the cell periplasm with little or no activity in the cell cytoplasm. Irontype SOD (FeSOD) contributed 88% of the total activity activity detected, although a manganese-type SOD (MnSOD) was present in the periplasm as well. Cells cultured at a higher dissolved O2 tension (10% of saturation) expressed increased activity of the MnSOD relative to that of the FeSOD.  相似文献   
6.
Manganese (Mn) is an essential element for humans, animals, and plants and is required for growth, development, and maintenance of health. Studies show that Mn metabolism is similar to that of iron, therefore, increased Mn levels in humans could interfere with the absorption of dietary iron leading to anemia. Also, excess exposure to Mn dust, leads to nervous system disorders similar to Parkinson's disease. Higher exposure to Mn is essentially related to industrial pollution. Thus, there is a benefit in developing a clean non-invasive technique for monitoring such increased levels of Mn in order to understand the risk of disease and development of appropriate treatments.To this end, the feasibility of Mn measurements with their minimum detection limits (MDL) has been reported earlier from the McMaster group. This work presents improvement to Mn assessment using an upgraded system and optimized times of irradiation and counting for induced gamma activity of Mn. The technique utilizes the high proton current Tandetron accelerator producing neutrons via the 7Li(p,n)7Be reaction at McMaster University and an array of nine NaI (Tl) detectors in a 4π geometry for delayed counting of gamma rays. The neutron irradiation of a set of phantoms was performed with protocols having different proton energy, current and time of irradiation. The improved MDLs estimated using the upgraded set up and constrained timings are reported as 0.67 μgMn/gCa for 2.3 MeV protons and 0.71 μgMn/gCa for 2.0 MeV protons. These are a factor of about 2.3 times better than previous measurements done at McMaster University using the in vivo set-up. Also, because of lower dose-equivalent and a relatively close MDL, the combination of: 2.0 MeV; 300 μA; 3 min protocol is recommended as compared to 2.3 MeV; 400 μA; 45 s protocol for further measurements of Mn in vivo.  相似文献   
7.
Abstract A screening procedure for highly thermostable yeast superoxide dismutase was developed. Growth yields at various temperatures were estimated for ten mesophilic and thermotolerant strains, belonging to the genera Saccharomyces, Kluyveromyces and Pichia . Higher yields at 45°C were obtained for K. lactis 90-3 and 90-4. A correlation between the ability to grow at higher temperature and the thermostability of the superoxide dismutase enzyme synthesized was observed. A comparison of the operational stability of the superoxide dismutase of all tested strains suggests that the enzyme of K. lactis strains was more thermostable than that of the other tested microorganisms.  相似文献   
8.
9.
Scavenging of superoxide radical by ascorbic acid   总被引:1,自引:0,他引:1  
Using acetaldehyde and xanthine oxidase as the source of suPeroxide radical, the second order rate constant for the reaction between ascorbic acid and superoxide radical was estimated to be 8.2 X 107 M-1 s-1. In rats, the average tissue concentration of ascorbic acid was of the order of 10-3 M and that of superoxide dismutase was of the order of 10-6 M. So, taking together both the rate constants and the tissue concentrations, the efficacy of ascorbic acid for scavenging superoxide radical in animal tissues appears to be better than that of suPeroxide dismutase. The significance of ascorbic acid as a scavenger of superoxide radical has been discussed from the point of view of the evolution of ascorbic acid synthesizing capacity of terrestrial vertebrates.  相似文献   
10.
The content of polyunsaturated fatty acids, the activities of superoxide dismutase (SOD), glutathione peroxidase, glutathione reductase, and catalase, and the concentration of reduced glutathione were measured in cerebral microvessels isolated from rat brain. Polyunsaturated fatty acids, mainly arachidonic, linoleic, and docosahexaenoic acids, accounted for 32% of total fatty acids in cerebral microvessels. Whereas total SOD activity in the microvessels was slightly lower than that found in cerebrum and cerebellum, glutathione peroxidase and glutathione reductase activities were twice as high and catalase activity was four times higher. Glutathione peroxidase in microvessels is active on both hydrogen peroxide and cumen hydroperoxide, and it is strongly inhibited by mercaptosuccinate. After several hours of preparation, the concentration of reduced glutathione in isolated microvessels was 0.7 mumol/mg of protein, which corresponds to a concentration of approximately 3.5 mM. Our results indicate that the blood-brain barrier contains large amounts of peroxide-detoxifying enzymes, which may act, in vivo, to protect its highly polyunsaturated membranes against oxidative alterations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号